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1. Introduction 

Computational pathology (CPATH) is a branch of pathology using computerized 

methods to gather information on diseases in patients.1 This Guideline gives 

guidance on methods for automated image analysis (AIA) of microscopic tumor 

images. A precondition of automated analysis is digitization of the tissue section (or 

parts thereof) and availability of such digital images is increasingly facilitated by the 

integration of whole slide image (WSI) scanners into routine laboratory workflows.2 

Compared to pathologists, computerized methods – if well-implemented – have the 

potential to improve reproducibility and accuracy of obtained data.3 Therefore, 

computer-assisted analysis of prognostic parameters might lead to more meaningful 

prognostic information (see discussion).  

Current state-of-the art methods are rapidly changing with ongoing research. As it is 

beyond the scope of this Guideline to address all available methods, we focus on 

important aspects for tumor prognostication that have been well-studied in the current 

literature. With further research, this document will be complemented with additional 

automated image analysis (AIA) approaches/prognostic parameters in future 

versions. First, we address some general considerations, then give recommendations 

for relevant broad categories and specific prognostic tasks. A list with definitions of 

relevant terms and important evaluation matrices is given in section 5 (Table 3) and 

section 6 (Table 4).  

2. General considerations 

There is a wide range of methods that can be applied for development of image 

analysis algorithms and depending on the methods used, there are general and 

specific aspects that need to be considered during development, performance 

evaluation, and application/implementation. Before starting to develop an automated 

image analysis solution, it has to be determined which of the available methods, or 

combination thereof, is best suited for the specific prognostication task and its 

intended use. Besides achieving the highest possible test performance, methods may 

be selected based on availability to labeled data, model flexibility, available 

computational power, tolerable processing time, ability to explain results (‘black box’ 

vs. ‘glass box’), and algorithmic robustness (for definitions of terms see Table 3).  
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For decision of detailed methods, it may be helpful to categorize the prognostically 

relevant microscopic feature into the following main aspects (there may be overlap):  

1) Algorithmic approach: 

a) Predefined algorithms with manual adjustment: most commonly using 

thresholding-based approaches  

b) Data-driven algorithms: mostly supervised learning, rarely unsupervised 

learning 

i) Traditional machine learning (handcrafted feature-based) 

ii) Deep learning (learned feature-based) 

2) Pattern recognition (PR) task: 

a) Classification 

b) Object detection 

c) Segmentation 

d) Rarely others (such as regression, clustering etc.) 

3) Dimension/level of pattern: 

a) Pixel-color value (pixel level) 

b) Cellular pattern  

c) Structural pattern (tissue architecture level) 

d) Global pattern (overall tumor/case/image level) 

While algorithms with manual adjustment are a fast and user-friendly tool for 

scoring immunohistochemical staining intensity, machine learning-based algorithms 

have also been used to quantify immunopositive tumor cells.4 Complex data-driven 

methods are suitable for qualitative or quantitative assessment of a very wide range 

of prognostically relevant features. Whereas some research is available for AIA of 

some prognostic aspects, especially for human tumors (see Table 1 and discussion), 

state-of-the art methods are likely to change significantly with ongoing research. 

Regardless, already available studies propose a vast variety of methods, even for the 

same prognostic aspect/parameter (Table 1). For example, algorithms for 

assessment of metastasis in H&E stained lymph node sections have been phrased 

as: 1) a classification task, i.e. is metastasis present in the lymph node section?,5 2) 

an object detection task, i.e. where is the metastatic foci in the lymph node section?,5 

or 3) a segmentation task, i.e. what is the area of the metastatic foci?.6 The decision 

on which pattern recognition task is used does not only affect development of 
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algorithms, but also evaluation methods. Development and evaluation of the same 

algorithms does not necessarily need to be considered as the same pattern 

recognition tasks depending on the intended interpretation of the algorithmic 

predictions, for example a classification network can be evaluated with evaluation 

metrics for segmentation7 or vice-versa.6 

Table 1. Examples of automated image analysis solutions for tumor prognostication 

of microscopic images (H&E stained images in blue font color; immunohistochemical 

staining in brown font color) using thresholding-based (TH), traditional machine 

learning-based (ML) and deep learning-based (DL) algorithms. 

Dimension of 
pattern 

Pattern recognition task 

Object detection Classificatio
n 

Segmentation Other 

Pixel-color 
value 

 Ki67 scoring, TH 8  

Cellular 
pattern 

Mitotic figures, 
DL 9 

Mitotic 
figures, DL 

10 

Mitotic figures, 
DL 11,12 

Mitotic Count: 
regression DL 

11 

Mitotic figures, DL 11   

 IHC scoring, 
DL 13, ML 4 

  

Structural 
pattern 

Identification of 
metastatic foci in 
lymph nodes, DL 

5 

 Metastatic 
area, DL 6 

 

Presence of 
tumor, DL 7 

 Extent of 
tumor, DL 7 

 

  Necrotic tumor 
area 

 

Global pattern 

 Presence of 
metastasis 
in lymph 

node, DL 5 

  

 Tumor 
grade, DL 14 

  

 Tumor type, 
DL 15 

  

 Tumor 
malignancy 

and 
differentiatio
n, DL 16-18 

  

 Patient 
outcome, 

DL 19 
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 Molecular 
profile, 
DL18,20  

  

2.1. AIA implementation  

Computer-assisted prognostication (CAP) with review by trained pathologists, as 

opposed to fully computerized prognostication, is currently recommended, if 

applicable. Image analysis solutions that allow visualization of algorithmic output 

(result) as an overlay on the digital image should be favored as this allows 

confirmation of algorithmic performance of each detected/classified/segmented object 

by pathologists. Visualization of algorithmic object detection results (overlay on the 

WSIs; Fig. 4), display of model scores along with detections (Fig. 4), heat maps (Fig 

1), segmentation maps and/or preselection of regions of interest (Figs. 1-4) may be 

integral parts of those CAP systems. Manual correction by pathologists is required if 

algorithms fail to produce accurate results for cases not covered by the data 

variability of the training material. These CPATH applications will aid pathologist 

efficiency, reproducibility and accuracy by reducing repetitive tasks or simplify difficult 

tasks and are not meant to replace pathologists. This will increase reliability and 

ability to explain the prognostication approach and allow the reviewing pathologist to 

retain responsibility in making final decisions (liability). Algorithms that merely classify 

prognostic aspects from images, are often intransparent (‘black box’) and a more 

thorough initial performance evaluation and possibly ongoing monitoring (in a certain 

subset of diagnostic cases) is necessary for those solutions. With considerable 

changes of the image acquisition / preanalytic workflow (different scanner type, 

scanning resolution etc.) performance of all types of algorithms have to be 

reevaluated and – based on results of reevaluation – algorithms may require 

modification.  
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Figures 1-4. Example of a computer-assisted prognostication (CAP) approach for 

counting mitotic figures in H&E stained tumor sections of a canine cutaneous mast 

cell tumor based on a previously published deep-learning based algorithm.11 Figure 

1: Visualization of a mitotic density heat map (hot spots) as an overlay on the original 

WSI. Figure 2: Visualization of the mitotic figure detections (small green squares) 

and preselection of the tumor area (2.37 mm², black box) with highest mitotic density 

(hot spot). Figure 3: Higher magnification of the preselected mitotic hot spot tumor 

area. Figure 4: Visualization of individual mitotic figure detections (green squares) at 

high magnification.  

3. Specific Recommendations 

3.1. Algorithms with Manual Adjustment  

Algorithms for manual adjustment are validated image analysis tools that are 

applicable for a wider range of applications (for example different 

immunohistochemical stains and tumor types). Handcrafted parameters of those 

generic algorithms can be adjusted to a specific use/case by manual optimization of 

certain parameters (e.g., thresholds). Algorithms typically consist of programmed sets 



CPATH 1.0 

 

7 
 

of filters and are not derived from autonomous learning with recorded data. In 

contrast to data-driven algorithms, performance is manually optimized by adjustment 

of parameters such as color or size threshold (thresholding). Algorithmic performance 

assessment is usually obtained by visual assessment of the output (e.g., as overlay 

on the image). A relevant example of this is automated scoring of 

immunohistochemical staining intensity of (prognostic) biomarkers. For this, several 

commercial or open-source, ready-to-use software solutions are available.  

3.1.1. Scoring Immunohistochemical Tumor Markers with Segmentation-based 

Thresholding 

While some immunohistochemical stains may be used for classification of the tumor 

type (presence of signal in a minimal percentage of tumor cells), other tumor markers 

(such as the proliferation marker Ki-67) require quantification as the proportion of 

positive cells and signal intensity per tumor cell correlates with patient outcome. It is 

the goal to measure the biological variability between tumors and reproducible as well 

as accurate measurements may be facilitated by automated scoring.  

1. Ensure minimal pre-analytic variability (see Ramos-Vara and Miller 21) by 

consistent tissue handling and staining procedure 

a. Controls for pre-analytic variability are difficult 

2. Segmentation of cellular compartments (membrane, cytoplasmic, nuclear) that 

are labeled by the biomarker through thresholding or other methods. Review 

the following aspects: 

a. Sensitivity and specificity of segmentation 

b. Contour accuracy: avoid undersegmentation and oversegmentation (see 

Fig. 5-8) 

3. Tumor cell classification through thresholding, based on color intensity of 

chromogen (hue range, saturation range). Four grades are commonly used: 0 

(negative), 1+ (lightly stained), 2+ (intermediately stained), 3+ (darkly stained) 

4. Image analysis and interpretation (Cave: inter-platform and inter-operator 

variability) 

a. Selection (manual or automated) of region of interest on WSI with useful 

prognostic information for analysis 

b. Review output visually (overlay on WSI) and possibly fine-tune 

parameter thresholds 
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c. For validation compare with manual scores by pathologist and/or patient 

outcome 

d. Report weighted scoring system (such as the histochemical score, H-

score) and possibly other measurements 

 

Figures 5-8. Microscopic image of a canine cutaneous mast cell tumor with 

immunohistochemical labeling for the proliferative marker Ki-67. Figure 5: without 

overlay of automated analysis. Figure 6: With overlay of automated analysis from a 

thresholding-based algorithm (Aperio Nuclear Algorithm, Leica Biosystems, Wetzlar, 

Germany) using appropriate segmentation thresholds. Figure 7: Thresholding-based 

analysis with oversegmentation. Figure 8: Thresholding-based analysis with 

undersegmentation.  



CPATH 1.0 

 

9 
 

3.2. Data-driven algorithms 

Data-driven algorithms are developed by training a machine learning model with input 

data (example images) and – in the case of supervised learning – with output data 

(associated labels). With increasing computational power, the models can have 

higher complexity and benefit from higher quantity of labeled data. In contrast to 

manually adjusted algorithms, fully data-driven algorithms can show a strong 

dependency on the distribution of the data, hindering adaptation to different domains. 

If data used to generate the algorithm is, however, representative, the natural image 

variability can be learned during training and performance can be outstanding on 

unseen data of the same domain. For application of algorithms to other domains 

(different tumor types, different WSI scanner etc.) not initially used for testing, a 

review of the performance (robustness) is required. A great advantage is that 

algorithmic performance can be accurately evaluated using various metrics, but 

particular attention must be paid to an unbiased and representative test dataset. For 

histological tumor prognostication, supervised learning with data from local 

morphological patterns, such as mitotic figures, has been applied frequently in 

current literature and recommendations are given in the following section. 

3.2.1. Supervised Deep Learning for local morphological patterns  

1. Development of a ground truth dataset with local (object-level) annotations 

(pixel-wise or centroid/bounding box) in digital histological images 

a. Sufficient quantity of cases and annotations per label class(es) (Note A) 

b. Highest possible dataset quality, i.e. consistency and accuracy (Note B) 

c. Labeling method:  

i. Complete labeling of all patterns of interest present in entire WSIs 

or subparts thereof 

ii. Manual confirmation of all labels by experts recommended. Labels 

(object-level) may be initially generated by: 

1. Manual screening of images (gold standard, Note B) 

2. Algorithmic-assisted labeling with human expert 

assessment (Note C) 

3. Combination of 1. manual and 2. algorithmic-augmented 

labeling (Note B and C) 
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2. Split of the dataset into independent subsets on case level based on “random” 

(considering density of pattern of interest per case) or “systematic” (for cross-

validation) case selection: training set (training and validation subset, for step 

3) and hold-out test set (for step 4). The test set shall be chosen based on a 

maximum representativeness for the problem, e.g. comprising the complete 

range of tumor subtypes and grades. While selection of cases according to 

prevalence can lead to more representative statistical measures, it may 

underrepresent rare cases and should be treated with caution. 

3. Training of deep learning models with supervised learning 

a. The most appropriate artificial / convolutional neuronal network (“state-

of-the-art models”) is selected based on the chosen pattern recognition 

task: classification, segmentation, object detection, regression 

b. Training data subset (with data augmentation) is used for training the 

model 

c. The validation data subset is used for evaluation of in-dataset 

generalization performance, selection of networks (recommendation: 

use ‘early stopping’ or other model state selection methods to prevent 

under- or overfitting), and calculation of appropriate thresholds  

4. Final evaluation of deep learning models: 

a. Test of algorithmic performance on the ground truth test set (Note B). If 

applicable, repeat training and testing for several (3-5) independent runs 

(report average, standard deviation and/or range) or perform K-fold cross 

validation. Possible evaluation metrics and performance visualization 

(Table 4) include: 

i. Classification task: Accuracy, Error Rate, Precision, Recall 

(Sensitivity), Specificity, F1-score, Receiver operating 

characteristic (ROC) curve, Area under the ROC curve (AUC), 

Confusion matrix for multi-class classification 

ii. Semantic segmentation task: Intersection over union (IOU, also 

known as Jaccard index), Dice coefficient 

iii. Object detection task: Mean average precision (mAP), Precision, 

Recall, F1 score 

b. It is not acceptable to modify algorithms based on test results (test 

dataset) 
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c. Possibly compare algorithmic performance to performance of multiple 

pathologists on object-level and/or scores-level (compare pathologists 

vs. pathologists with algorithm vs. pathologists)  

d. Possibly correlate algorithmic results (in comparison to manual scores) 

to patient outcome 

Notes: 

A.  Sufficient dataset quantity is important for training and testing of suitable 

deep learning-based algorithms. As deep learning networks learn by 

iterative training with progressive improvement of performance (up to a 

certain point), high amounts of data are necessary to ensure that 

important image features can be extracted by the network. The minimal 

number of labels and cases required is impossible to generalize as it 

depends very much on the degree of morphological variability of the 

searched pattern and other patterns present in the images. For mitotic 

figures, a few thousand labels was able to yield an algorithmic 

performance compatible with trained pathologists.9 However, higher 

number of annotations can still improve deep learning-based algorithms 

(for mitotic figures) as long as data quality (see Note C) is also high.22 

Besides sheer numbers of annotations and cases, it is absolutely 

essential that the images contain a representative degree of variability of 

the pattern expected to be present on the analyzed images (intended 

use). In contrast to trained pathologists,23 image analysis software 

cannot inherently adapt to biological variability (“normal” variability of 

morphological pattern, tissue types etc.) and pre-analytic image 

variability derived from staining protocols, type of WSI scanner and many 

others. Therefore, it is important that algorithms have been trained with 

and tested against images with a realistic degree of variability. However, 

it might be worthwhile to consider excluding images with inappropriate 

tissue quality for which pathologist-defined labels of the training and test 

dataset would have unacceptable reproducibility/consistency (dataset 

quality, see Note B); however, this would require to exclude poor quality 

cases from analysis as well. While algorithms that have only been trained 

with the perfect examples of the present pattern will not cope with 

imperfect examples, algorithms that have been trained mostly with 
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inconsistent data might generalize poorly. If datasets are created from 

small subparts of WSI (region of interest) and algorithms are later to be 

used for analysis of entire WSIs, it is necessary that the image sections 

selected are representative for the WSI, i.e. that all present tissue 

patterns and morphological variants are included.  

 

B.  Highest possible dataset quality leads to optimal algorithmic performance 

but is a trade off with time investment for dataset development and 

expertise of annotators. Trained and experienced pathologists are 

defined as the gold standard for labels of morphological patterns, 

however even experts have visual and cognitive limitations3 that lead to 

inter- and intra-observer variability, especially with ambiguous patterns. 

Inconsistency of decision criteria used for generating labels in the training 

data set may lead to a less optimal learning process for the algorithm 

(errors in learning because the label was wrong). Inconsistency in the 

pathologist-derived test data will result in miscalculation of the true 

algorithmic performance. In contrast, poor label accuracy, i.e. whether 

the annotations actually represent the pattern of interest, does not 

necessarily influence evaluation metrics, but will diminish the prognostic 

value of the derived deep learning model.  

Despite high measures of precaution, pathologist-derived datasets will 

inevitably have less than perfect label quality. For example, for the 

AMIDA13 dataset two pathologists independently labeled human breast 

cancer images for mitotic figures and identified 1,088 and 1,599 mitotic 

figures, respectively, in 23 images, of which 649 (concordance: 31.8%) 

had a positive label by both experts and 1,389 pattern had positive labels 

only by one pathologist (discordance: 68.2%). Of the 1,389 singly 

annotated patterns, a final decision was made by two further pathologists 

who agreed upon 434 labels being a mitotic figure (31.2%) and disagreed 

in 955 instances (68.8%).24 For a later challenge (TUPAC16) further 

cases were added to this dataset resulting in a total number of 1,552 

mitotic figures in the training set (agreement of pathologists for individual 

labels not published).23 Another research group relabeled those 73 

images and identified 1,239 mitotic figure labels in the same location as 
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in the original dataset – that is 79.8% of the original labels – and identified 

760 additional mitotic figure labels (+ 49 %) previously not labeled in the 

original dataset.25 From this we draw two conclusions: 1) pathologists 

may misclassify objects and 2) pathologists may overlook objects which 

are actually present, both inevitably leading to less than perfect dataset 

quality. Reduction of pattern misclassification may be achieved by: well-

defined decision criteria, diligent annotations, multiple blinded expert 

annotators with agreement on disagreed pattern (both, majority vote by 

an additional pathologists or consensus by the initial annotators seem to 

be acceptable26), reassessment of labels (unaided or by visual clustering 

based on feature vectors), and inclusion of cases with sufficiently high 

quality (quality must be representative for intended use). Reduction of 

missing relevant patterns may be achieved by repeated screening, usage 

of annotation software with guided screening, and algorithmic missed 

candidate screening (Note C). 

 

C.  Pathologist-derived labels are frequently the gold standard for local 

labels, however fully manual dataset development has some degree of 

inconsistency and is very time consuming. Different computer-assisted 

labeling methods have been developed to a) reduce human error arising 

from inter- and intra-observer variability, mislabeling and overlooking 

objects (dataset quality, see Note B) or b) to increase dataset size with 

reduced time-investment. Just like fully manual approaches, computer-

assisted approaches may have biases that have to be carefully weighed 

against the benefits. We consider it essential and of utmost importance 

that computer-assisted label creation or changes are always reviewed by 

pathologists in order to reduce the bias introduced by these methods. 

Fully algorithmic generation of labels without review by a pathologist 

(pseudo-labels) is not acceptable. Computer-assisted labeling methods 

include:  

a. Identification of mislabeled objects by review of the initial classification 

can be facilitated by visual clustering based on feature vectors, for 

example obtained by representation learning.26  
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b. Identification of overlooked objects can be done by analyzing the images 

with image analysis methods, which have been trained by a preliminary, 

pathologist-defined dataset for these images or with different datasets 

from a similar domain. This approach is best applied with high sensitivity 

/ low specificity (high number of true and false positives and low number 

of false negatives) algorithmic detection of potential candidates that 

require review by the annotator(s).26,22,25 The high number of false 

positive detections aims to provide a high detection rate, while 

additionally reducing the confirmation bias of pathologists. 

c. Computerized creation of labels in additional images with subsequent 

review by pathologists (expert-algorithm-collaboration) requires machine 

learning-based algorithms with high specificity to ensure that mostly true 

positive labels are generated. While this approach significantly reduces 

the time required for labeling, it is known that pathologists may miss 

algorithmically induced errors.27 Therefore, high diligence is necessary 

for the review by an expert. 

3.2.1.1. Mitotic figures in HE-stained images 

1. Dataset: (some open datasets are available, see Table 2) 

a. Quantity: >>1500 mitotic figure annotations from several cases 

with fully labeled images. If algorithm is intended to analyze entire 

WSI, images need to be representative for WSI 

b. Quality:  

i. reduce misclassification by multi-expert annotations (see 

Wilm et al.)28 : ground truth by at least two pathologists with 

final agreement (either consensus by reviewing 

pathologists or additional evaluation by a third pathologist 

of disagreed labels, Note B) 

ii. reduce overlooked candidates: screen images at least 

twice, subsequently computer-augmented methods with 

object-level expert assessment may be used (see Bertram 

et al.22,25 or Aubreville et al.)26 

2. Training: Supervised learning with state-of-the-art object detection 

networks, possibly a second stage with a classification network 
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3. Evaluation: at least F1-score (see Table 4), ideally from 3-5 runs to report 

performance variability 

4. Implementation as a CAP system with preselection of mitotic ‘hot spots’ 

(Figs. 1-4) and visualization of algorithmic detections (Fig. 9) as an 

overlay on WSI that can be reviewed by a pathologist 

Table 2. Relevant open datasets of histological tumor images with mitotic figure 

annotations (MF). 

Dataset Tumor type MF Tumor 
cases 

Published 
F1 scores 

MITOS-ATYPIA 201429 Human breast 
cancer 

749 11 0.356 

TUPAC 201623 Human breast 
cancer 

1,552 73 0.652 

Alternative TUPAC1625 Human breast 
cancer 

1,999 73 0.735 

MITOS_WSI_CCMCT_ODAEL22 Canine mast 
cell tumor 

44,800 32 0.820 

MITOS_WSI_CMC_CODAEL26 Canine breast 
cancer 

13,937 21 0.791 

 

 

Figure 9. Mitotic figure detections of a deep-learning based algorithm (published by 

Aubreville et al. 11) from a histological section (H&E stain) of a canine cutaneous 

mast cell tumor 
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4. Discussion 

Histologic and immunohistochemical tumor prognostication is traditionally 

performed by manual assessment of glass slides by trained pathologists. However, 

high inter- and intra-observer variability is well-known for visual assessment of 

numerous prognostic parameters by pathologists, such as for mitotic figures,30 

regardless of several attempts of standardization. Therefore, automated image 

analysis (AIA) has been proposed as a potential method to reduce human bias of 

visual assessment by pathologists.3,2 Besides higher reproducibility, AIA of 

microscopy images can have higher accuracy and can analyze vast amounts of data, 

i.e. large WSIs, in much shorter time and thereby increase diagnostic efficiency. 

Although AIA is currently almost exclusively used for research purposes, availability 

for diagnostic services will be facilitated by implementation of digital microscopy 

workflows in laboratories, increasing computational power and advancing AIA 

methods. As computerized approaches have the potential to improve tumor 

prognostication, future studies that develop those tools are indicated which should 

identify the benefits and limitations through comparison to manual assessment by 

pathologists. Due to higher reproducibility and possibly higher accuracy, 

computerized or computer-assisted methods likely will have different predictive 

ranges and cut-offs compared to the established manual approaches, which need to 

be elucidated in future studies.  

Various methods for creation of algorithms are available, ranging from simple 

thresholding-based and more sophisticated deep learning, which have different 

sources of error and all require careful development. While thresholding-based 

algorithms are mostly restricted to immunohistochemical images, data-driven 

methods (especially deep learning) are suitable for a wide range of morphological 

patterns. For example, immunohistochemical staining intensity of tumor cells can be 

automatically quantified using thresholding-based or data-driven algorithms.13 Using 

those methods, AIA has been shown to have higher reproducibility and higher 

prognostic value compared to the manual approach by pathologists for Ki-67 index in 

human breast cancer,31,32 and various membrane-binding biomarkers in human 

esophageal adenocarcinomas.33 In contrast, high performance for analysis of 

complex morphological patterns, such as detection of mitotic figures in H&E stained 

tumor sections, is mostly achieved with advanced deep learning networks and 
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sufficient training datasets (quality and quantity). The most common application of 

deep learning in pathology on the cellular-level is the detection of mitotic figures in 

tumor sections. Current studies on human25 and canine26 breast cancer as well as 

canine mast cell tumor11,22 reported quite high performances metrics. While it has 

been shown that those algorithms are on par with pathologists for detecting individual 

mitotic figures in images 34,9 and outperform pathologists in detecting the ‘hot spot’ 

regions (mitotically most active tumor region) in WSI,11 correlation to patient outcome 

have not yet been investigated for those object detection tasks.  

Besides evaluating patterns on the cellular level, deep learning can solve 

problems at lower magnification, such as detecting metastasis in lymph node 

sections.5 For metastasis identification, algorithms can be used for prescreening of 

images and a computer-assisted approach has been shown to have higher 

sensitivity, higher diagnostic speed and reduction of the perceived difficulty compared 

to the unassisted approach.35 A rather recent field of research of human pathology is 

the recognition of global patterns representing the entire H&E stained WSIs such as 

classification of tumor malignancy (normal tissue, benign tumor, in situ carcinoma or 

invasive carcinoma) 17 or classification of images according to their molecular 

features (genetic alterations and gene expression)20 and even direct estimation of 

patient outcome.19 Although this approach reduces the time-investment for manual 

labels on the morphological pattern-level (strong label level), deep learning networks 

often require thousands of weakly labeled WSI (one WSI = one label) in order to be 

able to extract relevant morphological features that correlate with tumor (sub)type, 

molecular features, or outcome and have not yet been investigated in veterinary 

pathology.  

There are multiple open-source as well as commercial software solutions 

available that allow pathologists to develop image analysis tools by themselves. 

However, data-driven approaches are particularly challenging and prone to bias. 

Involvement of experienced pathologists is essential for dataset development, model 

evaluation and software implementation into diagnostic workflows36,37 and 

pathologists need to get familiar with terminology (Table 3), available CPATH 

methods and evaluation matrices (Table 4). For algorithm development, cooperation 

with pattern recognition scientists, who have high expertise on CPATH methods and 

can build customized software solutions, can be highly beneficial for more difficult 
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projects. While thresholding-based approaches have high explainability and can be 

easily adapted by pathologists based on visualization of results, data-driven 

approaches are often considered a ‘black box’ as decision criteria of the algorithms 

are usually too complex to understand. While the lack of decision-making criteria 

limits identification of possible sources of error, it is absolutely essential that test 

datasets are created in an unbiased way and fully encompass the intended use. 

Although algorithms are 100% reproducible (same result for the same image), they 

are not necessarily robust, meaning that they cannot always cope with biological and 

pre-analytic variability on which pathologists can adapt more easily. For example, a 

deep learning-based algorithm for mitotic figures may cope only poorly with domain 

shifts introduced by different WSI scanners.26 While for thresholding-based solutions 

it is necessary to use slide standardization and color normalization to be able to work 

with similar cutoff values, data-driven algorithms are capable of learning a high 

degree of image variability and training datasets should include realistic variability 

that will likely be encountered during the intended use. If algorithms are to be used 

for a new, but related domain (characterized by biological or preanalytic features 

being not within the variability of the training set), performance needs to be 

reevaluated and transfer of machine learning algorithms to those related domains 

may be improved by methods like threshold optimization, transfer learning and 

domain adaptation.26 Besides proper performance evaluation, there are approaches 

that can convert that ‘black box’ into a more transparent ‘glass box’ that are likely to 

have higher acceptance among pathologists. For example, some algorithms can be 

implemented as computer-assisted prognosis (CAP) systems (as opposed to fully 

computerized decisions) which are geared toward aiding, not replacing pathologists. 

Image analysis solutions that allow visualization of algorithmic output (result) as an 

overlay on the digital image should be favored as this allows confirmation of 

algorithmic performance of each case by pathologists. These CAP approaches will 

improve the reliability of the AIA system and allow the reviewing pathologist to retain 

responsibility in making final decisions with regards to these prognostic parameters. 

In contrast, WSI classification tasks, such as classification of H&E-stained images 

into associated molecular features, are much more difficult to convert in to a ‘glass 

box’ and an appropriate performance evaluation with unbiased and representative 

test datasets is absolutely essential. Some studies have used heat maps to localize 

the tumor regions that were relevant for the classifier and pathologists can try to 
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interpret the underlying morphological features, which is not necessarily consistent 

with known prognostic parameters and may lead to identification of new, 

prognostically relevant features.19 

AIA of microscopic tumor images has many potential advantages over visual 

assessment by pathologists and might lead to more reproducible and accurate 

prognostic information, especially if pathologists review predictions for correctness 

(CAP). Nevertheless, there are numerous challenges that still hinder use of AIA for 

routine tumor evaluation. Future research is highly encouraged in order to develop 

open access datasets, improve deep learning methods, find ways to cope with 

domain shifts, investigate usefulness of software solutions, prove prognostic 

relevance of algorithms and many more. These issues will likely be resolved as more 

progress is made in this growing field of veterinary and human pathology. It is not 

only important that pathologists are willing to become users of AIA software but 

pathologists are also indispensable for developing and scientifically evaluating these 

tools in cooperation with pattern recognition scientists.  

5. Definitions of terms  

Table 3. Definitions of CPATH terms relevant for this Guideline 

Term Definition 

Algorithm: An image analysis algorithm is the ready-to-use software that is 
used for computerized assessment of images (input data), such 
as histological WSI, that result in predictions about the 
respective image analysis task. Using machine learning, the 
algorithm is commonly built around a machine learning model. 

Annotation: Annotations are individual events in the dataset with the position 
and/or outline for patterns of interest in the image and 
associated label classes. They are mostly created manually by 
annotators (i.e. pathologists, gold standard) with annotation 
software or created using computer-assisted labeling. 
Annotations are used as target data to an image (input data) for 
supervised machine learning.  

Annotation 
software:  

Annotations software enables an annotator to generate 
annotations for (whole slide) images, which can be saved in a 
database, a text file corresponding to the image, or even within 
the image file itself. Besides simple viewing of the images, a 
number of annotation tools (single and multi-coordinate 
annotations) and tools that facilitate the annotation process 
(such as guided screening, blind multi-label annotations etc.) are 
available.  

Artificial 
intelligence (AI): 

AI is a branch in computer science commonly used for 
computerized gathering of information from raw data, such as 
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histological images, by simulating intelligent behavior in 
computers (as opposed to natural intelligence displayed by 
humans and animals). Machine learning is a subset of artificial 
intelligence.  

Artificial 
neuronal 
networks (ANN): 

ANNs are machine learning models that are inspired by natural 
neuronal systems of humans and animals. Artificial neurons are 
organized in layers (input, hidden, output layer) that are 
connected to each other and can receive (with a specific 
weight), process and transmit signals. By modifying/adjusting 
the weights of neurons and their connections during training, a 
network is trained to predict a certain task. A highly relevant type 
of an ANN for deep learning is a convolutional neural network 
(CNN). 

Augmentation: Data augmentation is a method applied to data within the 
training process of a machine learning model. Annotated data 
gets altered (rotation, zooming, cropping, color alterations) in 
order to increase variability of the available data and thereby 
improve ability to generalize the most important image features 
during training.  

Automated 
image analysis 
(AIA) / digital 
image analysis 
(DIA): 

AIA is the process of extracting information from a digital image 
(typically whole slide image) by computerized methods. Some 
algorithms for automated image analysis are based on AI 
(including traditional machine learning and deep learning), 
others on simple image processing steps (including 
thresholding-based approaches). 

Black box 
algorithm: 

A black box (opposed to glass box) algorithm is characterized by 
the lack of an understandable relationship of input data and 
algorithmic output, i.e. the used decision criteria are too complex 
to understand. Deep learning-based algorithms, which extract 
relevant features of the pattern of interest by themselves, are 
often considered to be a ‘black box’. Display of intermediate 
results (e.g., object detections as an overlay in the digital 
images) can increase comprehensibility of these algorithms.  

Classification:  Classification is the task of image analysis that assigns 
categories of patterns (label classes) to an input image or image 
patch. Binary classification assigns one out of two label classes 
and multi-class classification assigns one out of several label 
classes to an image.  

Color 
normalization: 

Color normalization is the transformation of color properties of a 
(whole slide) image to align to a single standard. Color values of 
a WSI (or subset thereof) may vary based on tissue processing 
protocols, method of digitization of the glass slide, or due to 
other factors. WSI obtained from different WSI scanner types 
commonly have different color representations. This color 
variation of images can significantly influence image analysis 
and therefore compensation by color normalization may be 
beneficial.  

Computational 
pathology 
(CPATH): 

A branch in pathology using computerized methods to gather 
relevant information on a disease in a patient from one or 
multiple sources of raw data such as histology images, 
macroscopic images and gene sequences. In this Guideline, 
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CPATH especially refers to the field in pathology using 
automated image analysis (AIA) methods for digitized 
microscopic tumor sections (especially whole slide images, 
WSI). Methods commonly used for AIA come from the field of 
artificial intelligence (AI), more specifically deep learning. A 
broader definition of CPATH is the extraction of relevant 
information from any source of raw data including clinical 
electronic medical records, laboratory data, diagnostic imaging, 
genomics and others. 
 
CPATH uses computerized methods (AI and others for 
histological images) analogous to molecular pathology using 
molecular methods (PCR and others for detection of mutations). 

Computer-
assisted/aided 
prognosis 
(CAP): 

CAP is a diagnostic workflow for tumor prognostication using 
automated image analysis software to support the decision 
making by a pathologist. In contrast to fully computerized 
workflows, for CAP, pathologists always review algorithmic 
detections and use the information obtained by algorithms as a 
guide for the final diagnosis (algorithm/software-assisted 
decision support). CAP systems may support the pathologist 
best in critical steps that are known to have high inter- and intra-
rater variability due to visual or cognitive limitations of humans. 
One example would be preselection of an area of interest (such 
as the mitotically most active region for performing the mitotic 
count). While algorithmic predictions intend to improve 
reproducibility and accuracy as well as reduce pathologists’ time 
investment, the pathologists review intends to ensure reliability 
of the algorithm for each analyzed case.  

Convolutional 
neural network 
(CNN): 

A specific type of an artificial neural network (ANN) commonly 
used within deep learning in microscopic images. CNNs contain 
one or more layers that contain convolutional operators. These 
are specifically designed to extract spatial patterns from within 
the image, such as edges (input layers) or more complex 
patterns descriptive of an object (later layers). 

Cross 
validation: 

For cross validation the dataset is divided systematically into a 
specific number (K-folds, at least three) of subsets (on the case 
level) that are alternately used as the validation or test subset, 
while the remainder sets are commonly used for training. With 
each iteration (fold) of the training-test-process a different part of 
the dataset is used for training or testing, respectively. This 
allows a more thorough evaluation of the generalization of the 
method on the whole dataset and allows training with a larger 
proportion of the dataset. 

Database: In the context of this Guideline, a database is a collection of 
labels assigned to pathological, especially microscopic, (whole 
slide) images. Databases usually contain the image names, the 
identification number of the label, a label class, the location (x, y 
coordinates) of the label in the image, the annotators name for 
multi-expert annotations and possibly other information. 
Together with the annotated images, databases are part of 
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datasets, which are a precondition for training and testing 
supervised machine learning algorithms. 

Dataset: In the context of this Guideline, datasets are collections of 
pathological, especially microscopic, (whole slide) images and 
the associated database of annotations. Datasets are a 
precondition for development of supervised machine learning 
algorithms and performance testing.  

Deep learning 
(DL): 

DL is a subset of machine learning (ML). In contrast to ML, DL 
uses artificial neuronal networks with multiple (“deeper”) hidden 
layers and is capable of extracting (learning) relevant image 
features of pattern by itself directly from the raw image data. 
Deep learning systems are capable of providing 
unprecedentedly accurate solutions, yet require high-quality and 
high-quantity datasets (‘big data’). 

Domain: In machine learning, a domain defines the set of factors that 
influence the feature distribution of a dataset. For microscopy 
images, common domain-defining factors include the tissue type 
present, type of (neoplastic) disorder, slide preparation, staining 
method, image capturing and processing (WSI scanner 
hardware and software). Variabilities of domains between two 
datasets cause a domain shift, which can result in reduced 
algorithmic performance, if an algorithm is not “robust”. Multiple 
methods for reducing the domain shift exist, such as transfer 
learning, color space adaptation, and unsupervised domain 
adaptation of a model.  

Generalization 
performance: 

Data-driven algorithms are trained in such a way that they learn 
relevant features that distinguish the pattern of interest from the 
background class(es). Networks learn from training examples, 
but extracted features must be applicable to unseen (out-of-
sample) data. Generalization performance describes how well 
algorithms perform on unseen data, i.e. if the extracted features 
are generally descriptive. Due to morphological variability 
(biological and preanalytic) of the patterns of interest, training 
data is prone to a sampling error and the provided input 
information might not be predictive for other samples. Therefore, 
representativeness and high-quantity of training data, i.e. 
containing relevant degree of variability, is important. Further 
generalization errors may occur from overfitting or underfitting 
models (see definitions below). 

Gold standard: The gold standard is the practical method that is well-
established and most suitable for development of the ground 
truth labels. For histological and immunohistochemical 
specimens, trained pathologists are most commonly used as 
gold standard, regardless of their visual and cognitive limitations 
leading to some degree of inter- and intra-observer variability. 
As automated image analysis is designed to overcome human 
limitations, this approach seems to be somewhat paradoxical. 
However, a true gold standard is often lacking for most 
morphological patterns, whereas global features may have a 
more objective gold standard, such as presence/absence of 
genetic mutation.  
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Ground truth: Ground truth is the information of the ‘true’ label class derived by 
the defined gold-standard method. These ground truth labels are 
critical as they represent the reference during model training. 
They are also the reference for testing the algorithmic model’s 
performance (see Table 3). As manual assessment by human 
experts (pathologists) with well-known inter- and intra-rater 
variability are the gold standard for most histological patterns of 
interest, the ground truth can be subject to various biases and 
can include annotation errors. It is the aim of a highly diligent 
dataset creation to limit these errors. 

Histochemical 
(H)-score: 

Scoring system commonly used to quantify of tumor cell 
immunopositivity (immunohistochemistry). Tumor cells are 
graded based on their staining intensity into four grades: 0 
(negative), 1 (lightly stained), 2 (intermediately stained), 3 
(darkly stained). The weighted score is relative to the tumor cells 
enumerated and range between 0 - 300. 
 

𝐻 =  (% 𝑜𝑓 "1") + 2 × (% 𝑜𝑓 "2") + 3 ×  (% 𝑜𝑓 "3")  
Label: A label is an assigned label class to a morphological pattern or 

image. An annotation is a label in a specific location (centroid 
x,y position or demarcated area) of an image. 

Label class: Different categories of labels used for distinguishable 
morphological patterns/image features of interest. 

Machine 
learning (ML): 

ML is a subset of artificial intelligence in which an algorithm 
learns from representative data in order to create a model that 
can make decisions on new data without human interaction. ML 
can be categorized into “traditional” ML and deep learning (DL) 
methods. While the relevant features of the patterns of interest 
are given to the model with traditional ML (also called "hand-
crafted"), DL networks are capable of extracting these features 
by themselves. Compared to traditional ML, DL systems are 
generally more powerful but often require more data (‘big data’) 
for training.  

Model: A machine learning model is the product of training a machine 
learning algorithm for solving a specific task. Models created 
with the same inner structure and datasets may vary somewhat, 
as the learning process involves random sampling of and 
random variations within the data, and is thus not deterministic. 

Object 
detection: 

Object detection is a task in pattern recognition with localization 
(x and y coordinates) of a pattern of interest in the image and 
categorization of the label class of the pattern (classification). 
Errors of object detection may occur by wrong localization or 
class-assignment of the object.  

Overfitting: Machine learning aims to generate algorithms that can 
generalize features of the pattern of interest and thereby 
accurately predict output in unknown images. During training, 
networks gradually (over consecutive iterations) reduce the 
training error while learning from the training data. If the network 
has learned features specific only for the training data too well, 
i.e. was overfitted (usually at a late stage of the training), then 
the algorithms cannot extrapolate (“generalize”) to the validation 
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and test data. To evaluate this effect, the training process is 
regularly validated against an independent dataset (validation 
set) and training can be terminated (early stop) at the best 
validation performance. The opposite of overfitting is 
underfitting, which results from insufficient training iterations or 
training data.  

Over-
segmentation:  

Oversegmentation is an error in object segmentation with the 
compartment being smaller than the objects of interest (such as 
a cell or nucleus). This may lead to single objects being 
segmented into more than one compartment.  

Patching: Training of artificial neuronal networks with entire WSI is 
hampered by limited computational power. Patching is the 
process of producing smaller image sections (“patches”) from 
WSI that contain training examples (input data) for the training 
process. The appropriate patch size depends on various factors 
such as on the pattern of interest, available and required 
(downscaling) resolution of the images and available 
computational power.  

Regression: Regression is a task in pattern recognition that predicts a 
continuous/numerical output variable to an image.  

Robustness: Robustness is the reproducibility of an algorithm under variable 
image conditions (i.e. domain shift including variable staining, 
different scanners etc.). While all algorithms have 100% 
reproducibility when analyzing the same image, algorithms 
cannot necessarily adapt to pre-analytic and biological variability 
(generalization performance) in such a way like pathologists, 
which might significantly reduce algorithmic performance. 

Segmentation: Segmentation is the demarcation of compartments comprising 
all pixels which represent a morphological pattern (at the cellular 
or spatial-arrangement level). Imperfect segmentation results in 
under- or oversegmentation. Segmentation as a pattern 
recognition task describes the classification of each pixel of the 
image. 

Supervised 
learning:  

Supervised learning is a specific form of machine learning (as 
opposed to unsupervised learning) that results in algorithmic 
predictions based on both input and output data. Labelled data 
(output data) assigned the training image patches (input data) is 
required for training the artificial networks. It is the most 
commonly used form of artificial learning for CPATH in tumor 
histology. Pattern recognition tasks of supervised learning can 
be image classification, object detection, segmentation or 
regression.  

Thresholding 
(algorithm): 

Thresholding is a relevant way how parameters of algorithms for 
manual adjustment can be optimized to individual images. 
Thresholding-based algorithms use a set of simple image 
processing methods (filters) for segmentation of images, one of 
which is categorizing pixel-color values of compartments based 
on human-defined lower and upper limits of pixel values in these 
filters. Such algorithms commonly do not involve machine 
learning and therefore does not learn from data.  
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Under-
segmentation: 

Undersegmentation is an error in object segmentation with 
compartments being larger than the objects of interest (such as 
a cell or nucleus). This may lead to individual compartments 
containing more than one object. 

Unsupervised 
learning: 

A specific form of machine learning (opposed to supervised 
learning) that discovers patterns in data based only on input 
data (images). This form of learning does not use labeled data 
(output) for training of networks. A common pattern recognition 
task of unsupervised learning is clustering, where the 
dissimilarity and similarity of data is exploited to form categories 
(clusters). 

Whole slide 
image (WSI): 

WSI are “digital slides” with high microscopic resolution and 
containing all relevant tissue sections of a glass slide. WSI are 
generated (“scanned”) with WSI scanners (hardware), a process 
called whole slide imaging, and modified (for example stitching, 
image compression etc.) by associated software. WSI can be 
viewed by pathologists on computer monitors using a viewing 
software (digital microscopy) or analyzed by means of 
automated image analysis (AIA).  

 

6. Evaluation matrices and performance visualization  

 
Table 4. Important evaluation metrics for test performance of data-driven algorithms 

of object detection (OD), image classification (IC) and semantic image segmentation 

(IS) algorithms. 

Evaluation 
matrices 

Definition and Formula Useful for… 

OD IC IS 

Accuracy 
(Acc): 

𝐴𝑐𝑐 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 
The Acc is suitable for image classification, 
which states how many images were correctly 
classified. If classes are independent, accuracy 
can be given for each class separately. 
For image segmentation, accuracy can 
theoretically be calculated on the pixel-level 
(pixel-accuracy), however, this metric is 
inappropriate if the pattern of interest does not 
have a similar proportion of area as compared 
to the background class (which is common for 
histologic patterns).  

No Yes No 

Area under the 
ROC curve 
(AUC):  

The AUC is the area underneath the ROC curve 
(see below) and is suitable for classification 
experiments. This metric aggregates measures 
for all possible thresholds and ranges from 0 to 
1 with better performing algorithms having 
higher scores. The advantage of the ROC AUC 
value is that it is representative of the raw 

No Yes No 
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prediction performance, independent of the 
precision-recall trade-off (which is determined 
by the threshold).  

Average 
precision (AP) 

Average Precision (AP) is the average of 
several precision measurements for different 
recall values (recall-precision graph). Most 
commonly, the AP is determined at 11 different 
recall values (0.0, 0.1, … up to 1.0). The AP is 
determined for a binary object detection tasks 
and ranges from 0 (poor performance) to 1 
(perfect performance).  

Yes No No 

Confusion 
matrix / error 
matrix 

The confusion matrix is a table layout for 
performance evaluation of multi-class 
classification tasks with rows for each predicted 
class and columns for each label class. This 
table separates the predicted classes into the 
actual (ground truth) class and it can be 
visualized which classes lead to most 
“confusion”.  

No Yes No 

Dice 
coefficient:  

The dice coefficient is a metric to evaluate the 
overlap between a predicted segmentation 
mask and a ground truth mask. It ranges 
between 0 (no overlap) to 1 (all pixel overlap).  

No No Ye
s 

Error rate (Err):  
𝐸𝑟𝑟 =

𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
  

 
The Err is suitable for image classification 
experiments, which states how many images 
were misclassified. The type of error (false 
positive or false negative) is, however, not 
distinguished.  

No Yes No 

False negative 
(FN): 

A FN is an image analysis error with 
discrepancy between negative predictions and 
ground truth positive condition. 
Binary Image classification task: Algorithmic 
classification determined absence of the 
searched class while the ground truth indicates 
presence.  
Object detection task: a pattern of interest is not 
detected within the predefined distance (in pixel) 
to or overlap (IOU) with a ground truth 
annotation.  

Yes Yes No 

False positive 
(FP):  

A FP is an image analysis error with 
discrepancy between positive predictions (with a 
model score above defined threshold) and 
ground truth negative condition. 
 
Binary Image classification task: Algorithmic 
classification determined presence of the 
searched class while the ground truth indicates 
absence. 

Yes Yes No 
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Object detection task: a pattern of interest is 
detected outside the vicinity (outside maximal 
distance in pixel or with too small IOU overlap) 
of an ground truth annotation. 

F1 score 
𝐹1 = 2 ×  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Or 

𝐹1 =  
2𝑇𝑃 

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 
The F1 score is suitable for object detection and 
image classification experiments. It states the 
harmonic mean of recall and precision. The 
score ranges from 0 (poor performance) to 1 
(perfect performance).  

Yes Yes No 

Mean average 
precision 
(mAP) 

𝑚𝐴𝑃 =
𝐴𝑃𝑄1  +  𝐴𝑃𝑄2  +  𝐴𝑃𝑄3+. . . +𝐴𝑃𝑄𝑁

𝑁
 

 
The mAP is the mean of the AP values 
determined for all (N) different queries 
(Q1,Q2,…QN). Queries are mostly defined as 
different label classes for the object detection 
task (multi-class task). The mAP evaluates the 
overall performance under different queries and 
values range from 0 (poor performance) to 1 
(perfect performance). 

Yes No No 

Intersection 
over unit (IOU) 
/ Jaccard index 

𝐼𝑂𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 (𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛)

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
 

 
IoU measures the overlap between areas of the 
annotated (ground truth) and algorithmically 
predicted pattern. For a segmentation task, it 
measures to which extent the ground truth and 
prediction overlap (ranging from 0 -1).  
 
In object detection tasks, we typically require a 
minimum IOU for two objects (ground truth and 
prediction) to be considered as matching. 

No No Ye
s 

Precision 
(positive 
predictive 
value) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
Precision is suitable for object detection and 
image classification experiments. It states how 
many of the positive predictions are relevant, or, 
in other words, how many of the detected 
patterns (object detection task) or  positive 
classifications (image classification task) are in 
agreement with the ground truth positive labels. 

Yes Yes No 

Recall 
(sensitivity, 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Yes Yes No 
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true positive 
rate) 

 
Recall is suitable for object detection and image 
classification experiments. In an object 
detection task it states how many of the relevant 
patterns, i.e. ground truth positive labels, have 
been detected in the image. In an image 
classification task it states how many of the 
ground truth positive images have been 
classified as positive.  

Receiver 
operating 
characteristics 
(ROC) curve: 

A graph plotting true positive rate (TPR, Recall; 
y-axis: 0 - 1) against False positive rate (FPR; x-
axis: 0 - 1) at numerous classification thresholds 
of a binary classification experiment. Commonly 
multiple classification algorithms (with different 
performances) are compared in these graphs. 
 

𝑇𝑃𝑅 = 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 FPR =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=  1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

 
An orthogonal line in the graph (line of no-
discrimination) indicates random classification at 
the respective threshold (balance points with 
TPR = FPR). A classification result that is better 
than guessing gives points above the line and 
classification results worse than random 
guessing gives points below the line. The 
FPR=0 and TPR=1 point (error-free point) would 
indicate perfect classification. If comparing 
multiple algorithms, the curve closest to the left 
upper corner is interpreted as having best 
performance. For individual algorithms, the point 
in the curve closest to the error-free point (point 
of the curve with a tangent parallel to the line of 
non-discrimination) indicates the highest 
performance. However, depending on the 
desired test, it may be preferable to minimize 
one type of classification error over the other 
(sensitivity vs. specificity). Lower thresholds will 
result in more positive classifications (more true 
positives and more false positives), while 
increasing the threshold will result in more 
negative classifications (more true and false 
negatives).  

No Yes No 

Specificity 
(True negative 
rate):  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 
Specificity can be used for image classification 
experiments and states how many of the ground 

No Yes No 
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truth negative images have been classified as 
negative. 

True negative 
(TN): 

TN classifications are defined if algorithmic 
classification and ground truth annotation both 
determined absence of the searched class. TNs 
are not reasonable for object detection tasks.  

No Yes No 

True positive 
(TP): 

A TP is a positive prediction and ground truth 
positive condition. 
Image classification task: Algorithmic 
classification and ground truth annotation 
determined presence of the searched class in 
the image. 
Object detection task: a pattern of interest is 
detected within a maximum distance (in pixel) or 
IOU threshold to the ground truth annotation. 
The maximum distance should be adapted to 
the specific task, for example be equivalent to 
the median radius of a tumor cell for detection of 
mitotic figures.  

Yes Yes No 

 

  

Figure 10. Examples of a true positive, false positive and false negative detection of 

a deep learning-based algorithms that was trained to detect mitotic figures in canine 

cutaneous mast cell tumors (see Aubreville et al.) 11 True negatives are not available 

(NA) for object detections tasks. Green squares represent algorithmic detections 
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(positive detection with a model score above 0.5, indicated below the box) and blue 

circles represent ground truth annotations by pathologists.  
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